Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(2): 101546, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34999117

RESUMO

Nonsense mutations, which occur in ∼11% of patients with genetic disorders, introduce premature termination codons (PTCs) that lead to truncated proteins and promote nonsense-mediated mRNA decay. Aminoglycosides such as G418 permit PTC readthrough and so may be used to address this problem. However, their effects are variable between patients, making clinical use of aminoglycosides challenging. In this study, we tested whether TRPC nonselective cation channels contribute to the variable PTC readthrough effect of aminoglycosides by controlling their cellular uptake. Indeed, a recently reported selective TRPC5 inhibitor, AC1903, consistently suppressed G418 uptake and G418-induced PTC readthrough in the DMS-114 cancer cell line and junctional epidermolysis bullosa (JEB) patient-derived keratinocytes. Interestingly, the effect of AC1903 in DMS-114 cells was mimicked by nonselective TRPC inhibitors, but not by well-characterized inhibitors of TRPC1/4/5 (Pico145, GFB-8438) or TRPC3/6/7 (SAR7334), suggesting that AC1903 may work through additional or undefined targets. Indeed, in our experiments, AC1903 inhibited multiple TRPC channels including TRPC3, TRPC4, TRPC5, TRPC6, TRPC4-C1, and TRPC5-C1, as well as endogenous TRPC1:C4 channels in A498 renal cancer cells, all with low micromolar IC50 values (1.8-18 µM). We also show that AC1903 inhibited TRPV4 channels, but had weak or no effects on TRPV1 and no effect on the nonselective cation channel PIEZO1. Our study reveals that AC1903 has previously unrecognized targets, which need to be considered when interpreting results from experiments with this compound. In addition, our data strengthen the hypothesis that nonselective calcium channels are involved in aminoglycoside uptake.


Assuntos
Aminoglicosídeos , Códon sem Sentido , Indazóis , Canais de Cátion TRPC , Aminoglicosídeos/farmacologia , Códon sem Sentido/efeitos dos fármacos , Humanos , Indazóis/farmacologia , Inibidores da Síntese de Proteínas , Canais de Cátion TRPC/antagonistas & inibidores , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo
2.
Cell Chem Biol ; 29(5): 870-882.e11, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34520745

RESUMO

The pathogen Mycobacterium tuberculosis (Mtb) evades the innate immune system by interfering with autophagy and phagosomal maturation in macrophages, and, as a result, small molecule stimulation of autophagy represents a host-directed therapeutics (HDTs) approach for treatment of tuberculosis (TB). Here we show the marine natural product clionamines activate autophagy and inhibit Mtb survival in macrophages. A yeast chemical-genetics approach identified Pik1 as target protein of the clionamines. Biotinylated clionamine B pulled down Pik1 from yeast cell lysates and a clionamine analog inhibited phosphatidyl 4-phosphate (PI4P) production in yeast Golgi membranes. Chemical-genetic profiles of clionamines and cationic amphiphilic drugs (CADs) are closely related, linking the clionamine mode of action to co-localization with PI4P in a vesicular compartment. Small interfering RNA (siRNA) knockdown of PI4KB, a human homolog of Pik1, inhibited the survival of Mtb in macrophages, identifying PI4KB as an unexploited molecular target for efforts to develop HDT drugs for treatment of TB.


Assuntos
Mycobacterium tuberculosis , Proteínas de Saccharomyces cerevisiae , Tuberculose , 1-Fosfatidilinositol 4-Quinase/metabolismo , Autofagia , Humanos , Macrófagos/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Tuberculose/tratamento farmacológico
3.
Nucleic Acids Res ; 49(7): 3692-3708, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33764477

RESUMO

Premature termination codon (PTC) readthrough is considered a potential treatment for genetic diseases caused by nonsense mutations. High concentrations of aminoglycosides induce low levels of PTC readthrough but also elicit severe toxicity. Identifying compounds that enhance PTC readthrough by aminoglycosides or reduce their toxicity is a continuing challenge. In humans, a binary complex of eukaryotic release factors 1 (eRF1) and 3 (eRF3a or eRF3b) mediates translation termination. They also participate in the SURF (SMG1-UPF1-eRF1-eRF3) complex assembly involved in nonsense-mediated mRNA decay (NMD). We show that PTC readthrough by aminoglycoside G418 is considerably enhanced by eRF3a and eRF3b siRNAs and cereblon E3 ligase modulators CC-885 and CC-90009, which induce proteasomal degradation of eRF3a and eRF3b. eRF3 degradation also reduces eRF1 levels and upregulates UPF1 and selectively stabilizes TP53 transcripts bearing a nonsense mutation over WT, indicating NMD suppression. CC-90009 is considerably less toxic than CC-885 and it enhances PTC readthrough in combination with aminoglycosides in mucopolysaccharidosis type I-Hurler, late infantile neuronal ceroid lipofuscinosis, Duchenne muscular dystrophy and junctional epidermolysis bullosa patient-derived cells with nonsense mutations in the IDUA, TPP1, DMD and COL17A1 genes, respectively. Combination of CC-90009 with aminoglycosides such as gentamicin or ELX-02 may have potential for PTC readthrough therapy.


Assuntos
Aminoglicosídeos/farmacologia , Códon sem Sentido , Doenças Genéticas Inatas , Fatores de Terminação de Peptídeos/metabolismo , Linhagem Celular , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/terapia , Humanos , Tripeptidil-Peptidase 1
4.
SLAS Discov ; 26(5): 698-711, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33345679

RESUMO

ETV6 is an ETS family transcriptional repressor for which head-to-tail polymerization of its PNT domain facilitates cooperative binding to DNA by its ETS domain. Chromosomal translocations frequently fuse the ETV6 PNT domain to one of several protein tyrosine kinases. The resulting chimeric oncoproteins undergo ligand-independent self-association, autophosphorylation, and aberrant stimulation of downstream signaling pathways, leading to a variety of cancers. Currently, no small-molecule inhibitors of ETV6 PNT domain polymerization are known and no assays targeting PNT domain polymerization have been described. In this study, we developed complementary experimental and computational approaches for identifying such inhibitory compounds. One mammalian cellular approach utilized a mutant PNT domain heterodimer system covalently attached to split Gaussia luciferase fragments. In this protein-fragment complementation assay, inhibition of PNT domain heterodimerization reduces luminescence. A yeast assay took advantage of activation of the reporter HIS3 gene upon heterodimerization of mutant PNT domains fused to DNA-binding and transactivation domains. In this two-hybrid screen, inhibition of PNT domain heterodimerization prevents cell growth in medium lacking histidine. The Bristol University Docking Engine (BUDE) was used to identify virtual ligands from the ZINC8 library predicted to bind the PNT domain polymerization interfaces. More than 75 hits from these three assays were tested by nuclear magnetic resonance spectroscopy for binding to the purified ETV6 PNT domain. Although none were found to bind, the lessons learned from this study may facilitate future approaches for developing therapeutics that act against ETV6 oncoproteins by disrupting PNT domain polymerization.


Assuntos
Descoberta de Drogas/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-ets/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-ets/química , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/química , Bioensaio/métodos , Genes Reporter , Humanos , Ligação Proteica , Relação Estrutura-Atividade , Variante 6 da Proteína do Fator de Translocação ETS
5.
Cell Death Dis ; 11(11): 989, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203845

RESUMO

Glioblastoma (GBM) is the most common primary malignant brain tumor, and it has a uniformly poor prognosis. Hypoxia is a feature of the GBM microenvironment, and previous work has shown that cancer cells residing in hypoxic regions resist treatment. Hypoxia can trigger the formation of stress granules (SGs), sites of mRNA triage that promote cell survival. A screen of 1120 FDA-approved drugs identified 129 candidates that delayed the dissolution of hypoxia-induced SGs following a return to normoxia. Amongst these candidates, the selective estrogen receptor modulator (SERM) raloxifene delayed SG dissolution in a dose-dependent manner. SG dissolution typically occurs by 15 min post-hypoxia, however pre-treatment of immortalized U251 and U3024 primary GBM cells with raloxifene prevented SG dissolution for up to 2 h. During this raloxifene-induced delay in SG dissolution, translational silencing was sustained, eIF2α remained phosphorylated and mTOR remained inactive. Despite its well-described role as a SERM, raloxifene-mediated delay in SG dissolution was unaffected by co-administration of ß-estradiol, nor did ß-estradiol alone have any effect on SGs. Importantly, the combination of raloxifene and hypoxia resulted in increased numbers of late apoptotic/necrotic cells. Raloxifene and hypoxia also demonstrated a block in late autophagy similar to the known autophagy inhibitor chloroquine (CQ). Genetic disruption of the SG-nucleating proteins G3BP1 and G3BP2 revealed that G3BP1 is required to sustain the raloxifene-mediated delay in SG dissolution. Together, these findings indicate that modulating the stress response can be used to exploit the hypoxic niche of GBM tumors, causing cell death by disrupting pro-survival stress responses and control of protein synthesis.


Assuntos
Antagonistas de Estrogênios/uso terapêutico , Glioblastoma/tratamento farmacológico , Cloridrato de Raloxifeno/uso terapêutico , Morte Celular , Antagonistas de Estrogênios/farmacologia , Humanos , Cloridrato de Raloxifeno/farmacologia
6.
Molecules ; 25(12)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599753

RESUMO

The increasing prevalence of drug-resistant influenza viruses emphasizes the need for new antiviral countermeasures. The M2 protein of influenza A is a proton-gated, proton-selective ion channel, which is essential for influenza replication and an established antiviral target. However, all currently circulating influenza A virus strains are now resistant to licensed M2-targeting adamantane drugs, primarily due to the widespread prevalence of an M2 variant encoding a serine to asparagine 31 mutation (S31N). To identify new chemical leads that may target M2(S31N), we performed a virtual screen of molecules from two natural product libraries and identified chebulagic acid as a candidate M2(S31N) inhibitor and influenza antiviral. Chebulagic acid selectively restores growth of M2(S31N)-expressing yeast. Molecular modeling also suggests that chebulagic acid hydrolysis fragments preferentially interact with the highly-conserved histidine residue within the pore of M2(S31N) but not adamantane-sensitive M2(S31). In contrast, chebulagic acid inhibits in vitro influenza A replication regardless of M2 sequence, suggesting that it also acts on other influenza targets. Taken together, results implicate chebulagic acid and/or its hydrolysis fragments as new chemical leads for M2(S31N) and influenza-directed antiviral development.


Assuntos
Antivirais/farmacologia , Benzopiranos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Glucosídeos/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Proteínas da Matriz Viral/antagonistas & inibidores , Amantadina/química , Amantadina/farmacologia , Animais , Antivirais/química , Cães , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Histidina/química , Vírus da Influenza A/fisiologia , Células Madin Darby de Rim Canino , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Replicação Viral/efeitos dos fármacos
7.
Mol Neurodegener ; 15(1): 21, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32178712

RESUMO

BACKGROUND: Frontotemporal lobar degeneration (FTLD) is a devastating and progressive disorder, and a common cause of early onset dementia. Progranulin (PGRN) haploinsufficiency due to autosomal dominant mutations in the progranulin gene (GRN) is an important cause of FTLD (FTLD-GRN), and nearly a quarter of these genetic cases are due to a nonsense mutation. Premature termination codons (PTC) can be therapeutically targeted by compounds allowing readthrough, and aminoglycoside antibiotics are known to be potent PTC readthrough drugs. Restoring endogenous PGRN through PTC readthrough has not previously been explored as a therapeutic intervention in FTLD. METHODS: We studied whether the aminoglycoside G418 could increase PGRN expression in HEK293 and human induced pluripotent stem cell (hiPSC)-derived neurons bearing the heterozygous S116X, R418X, and R493X pathogenic GRN nonsense mutations. We further tested a novel substituted phthalimide PTC readthrough enhancer in combination with G418 in our cellular models. We next generated a homozygous R493X knock-in hiPSC isogenic line (R493X-/- KI), assessing whether combination treatment in hiPSC-derived neurons and astrocytes could increase PGRN and ameliorate lysosomal dysfunction relevant to FTLD-GRN. To provide in vivo proof-of-concept of our approach, we measured brain PGRN after intracerebroventricular administration of G418 in mice expressing the V5-tagged GRN nonsense mutation R493X. RESULTS: The R418X and R493X mutant GRN cell lines responded to PTC readthrough with G418, and treatments increased PGRN levels in R493X-/- KI hiPSC-derived neurons and astrocytes. Combining G418 with a PTC readthrough enhancer increased PGRN levels over G418 treatment alone in vitro. PGRN deficiency has been shown to impair lysosomal function, and the mature form of the lysosomal protease cathepsin D is overexpressed in R493X-/- KI neurons. Increasing PGRN through G418-mediated PTC readthrough normalized this abnormal lysosomal phenotype in R493X-/- KI neuronal cultures. A single intracerebroventricular injection of G418 induced GRN PTC readthrough in 6-week-old AAV-GRN-R493X-V5 mice. CONCLUSIONS: Taken together, our findings suggest that PTC readthrough may be a potential therapeutic strategy for FTLD caused by GRN nonsense mutations.


Assuntos
Degeneração Lobar Frontotemporal/genética , Expressão Gênica/efeitos dos fármacos , Gentamicinas/farmacologia , Lisossomos/efeitos dos fármacos , Progranulinas/genética , Animais , Células Cultivadas , Códon sem Sentido , Códon de Terminação , Células HEK293 , Humanos , Lisossomos/metabolismo , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Progranulinas/biossíntese , Regulação para Cima
8.
ACS Med Chem Lett ; 10(5): 726-731, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31097990

RESUMO

Nonsense mutations introduce a premature termination codon (PTC) and are the underlying cause of multiple rare genetic diseases and cancers. Although certain aminoglycosides bind to eukaryotic ribosomes enabling incorporation of an amino acid at the PTC and formation of full-length protein, they are inefficient and toxic at therapeutic doses. Library screening in assays that measure readthrough at a PTC in the TP53 gene in human HDQ-P1 cells identified six novel 2-aminothiazole-4-carboxamide derivatives that potentiate the PTC readthrough (PTCR) efficiency of G418 when used in combination. The two most potent compounds incorporated a 4-indazole motif on the 2-aminothiazole nitrogen and a hydrophobic aryl substituent on the carboxamide nitrogen. These compounds are valuable tools to further investigate the therapeutic potential of aminoglycoside-induced PTCR.

9.
Proc Natl Acad Sci U S A ; 114(13): 3479-3484, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28289221

RESUMO

Nonsense mutations underlie about 10% of rare genetic disease cases. They introduce a premature termination codon (PTC) and prevent the formation of full-length protein. Pharmaceutical gentamicin, a mixture of several related aminoglycosides, is a frequently used antibiotic in humans that can induce PTC readthrough and suppress nonsense mutations at high concentrations. However, testing of gentamicin in clinical trials has shown that safe doses of this drug produce weak and variable readthrough activity that is insufficient for use as therapy. In this study we show that the major components of pharmaceutical gentamicin lack PTC readthrough activity but the minor component gentamicin B1 (B1) is a potent readthrough inducer. Molecular dynamics simulations reveal the importance of ring I of B1 in establishing a ribosome configuration that permits pairing of a near-cognate complex at a PTC. B1 induced readthrough at all three nonsense codons in cultured cancer cells with TP53 (tumor protein p53) mutations, in cells from patients with nonsense mutations in the TPP1 (tripeptidyl peptidase 1), DMD (dystrophin), SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like 1), and COL7A1 (collagen type VII alpha 1 chain) genes, and in an in vivo tumor xenograft model. The B1 content of pharmaceutical gentamicin is highly variable and major gentamicins suppress the PTC readthrough activity of B1. Purified B1 provides a consistent and effective source of PTC readthrough activity to study the potential of nonsense suppression for treatment of rare genetic disorders.


Assuntos
Antibacterianos/farmacologia , Códon sem Sentido/genética , Gentamicinas/farmacologia , Mutação/efeitos dos fármacos , Aminopeptidases/genética , Antibacterianos/química , Linhagem Celular Tumoral , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Distrofina/genética , Gentamicinas/química , Humanos , Serina Proteases/genética , Tripeptidil-Peptidase 1 , Proteína Supressora de Tumor p53/genética
10.
Nucleic Acids Res ; 44(14): 6583-98, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27407112

RESUMO

Nonsense mutations introduce premature termination codons and underlie 11% of genetic disease cases. High concentrations of aminoglycosides can restore gene function by eliciting premature termination codon readthrough but with low efficiency. Using a high-throughput screen, we identified compounds that potentiate readthrough by aminoglycosides at multiple nonsense alleles in yeast. Chemical optimization generated phthalimide derivative CDX5-1 with activity in human cells. Alone, CDX5-1 did not induce readthrough or increase TP53 mRNA levels in HDQ-P1 cancer cells with a homozygous TP53 nonsense mutation. However, in combination with aminoglycoside G418, it enhanced readthrough up to 180-fold over G418 alone. The combination also increased readthrough at all three nonsense codons in cancer cells with other TP53 nonsense mutations, as well as in cells from rare genetic disease patients with nonsense mutations in the CLN2, SMARCAL1 and DMD genes. These findings open up the possibility of treating patients across a spectrum of genetic diseases caused by nonsense mutations.


Assuntos
Aminoglicosídeos/farmacologia , Códon sem Sentido/genética , Saccharomyces cerevisiae/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Alelos , Aminoglicosídeos/química , Doenças Genéticas Inatas/genética , Células HCT116 , Homozigoto , Humanos , Paromomicina/farmacologia , Ftalimidas/química , Ftalimidas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Fatores de Tempo , Tripeptidil-Peptidase 1 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
11.
Eur J Med Chem ; 120: 64-73, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27187859

RESUMO

The development of treatments for influenza that inhibit the M2 proton channel without being susceptible to the widespread resistance mechanisms associated with the adamantanes is an ongoing challenge. Using a yeast high-throughput yeast growth restoration assay designed to identify M2 channel inhibitors, a single screening hit was uncovered. This compound (3), whose structure was incorrectly identified in the literature, is an inhibitor with similar potency to amantadine against WT M2. A library of derivatives of 3 was prepared and activity against WT M2 and the two principal mutant strains (V27A and S31N) was assessed in the yeast assay. The best compounds were further evaluated in an antiviral plaque reduction assay using engineered WT, V27A and S31N M2 influenza A strains with otherwise identical genetic background. Compound 63 was found to inhibit all three virus strains in this cell based antiviral assay at micromolar concentrations, possibly through a mechanism other than M2 inhibition.


Assuntos
Amantadina/farmacologia , Antivirais/química , Proteínas da Matriz Viral/antagonistas & inibidores , Amantadina/química , Antivirais/farmacologia , Humanos , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/genética , Influenza Humana/tratamento farmacológico , Mutação , Prótons , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
12.
PLoS One ; 9(12): e114964, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25494214

RESUMO

Autophagy is a cellular catabolic process responsible for the degradation of cytoplasmic constituents, including organelles and long-lived proteins, that helps maintain cellular homeostasis and protect against various cellular stresses. Verteporfin is a benzoporphyrin derivative used clinically in photodynamic therapy to treat macular degeneration. Verteporfin was recently found to inhibit autophagosome formation by an unknown mechanism that does not require exposure to light. We report that verteporfin directly targets and modifies p62, a scaffold and adaptor protein that binds both polyubiquitinated proteins destined for degradation and LC3 on autophagosomal membranes. Western blotting experiments revealed that exposure of cells or purified p62 to verteporfin causes the formation of covalently crosslinked p62 oligomers by a mechanism involving low-level singlet oxygen production. Rose bengal, a singlet oxygen producer structurally unrelated to verteporfin, also produced crosslinked p62 oligomers and inhibited autophagosome formation. Co-immunoprecipitation experiments demonstrated that crosslinked p62 oligomers retain their ability to bind to LC3 but show defective binding to polyubiquitinated proteins. Mutations in the p62 PB1 domain that abolish self-oligomerization also abolished crosslinked oligomer formation. Interestingly, small amounts of crosslinked p62 oligomers were detected in untreated cells, and other groups noted the accumulation of p62 forms with reduced SDS-PAGE mobility in cellular and animal models of oxidative stress and aging. These data indicate that p62 is particularly susceptible to oxidative crosslinking and lead us to propose a model whereby oxidized crosslinked p62 oligomers generated rapidly by drugs like verteporfin or over time during the aging process interfere with autophagy.


Assuntos
Autofagia/efeitos dos fármacos , Porfirinas/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Autofagossomos/metabolismo , Humanos , Células MCF-7 , Microscopia de Fluorescência , Fagossomos/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Rosa Bengala/farmacologia , Ubiquitinação , Verteporfina
13.
PLoS One ; 8(2): e55271, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23383318

RESUMO

The M2 proton channel of the influenza A virus is the target of the anti-influenza drugs amantadine and rimantadine. The effectiveness of these drugs has been dramatically limited by the rapid spread of drug resistant mutations, mainly at sites S31N, V27A and L26F in the pore of the channel. Despite progress in designing inhibitors of V27A and L26F M2, there are currently no drugs targeting these mutated channels in clinical trials. Progress in developing new drugs has been hampered by the lack of a robust assay with sufficient throughput for discovery of new active chemotypes among chemical libraries and sufficient sensitivity to provide the SAR data essential for their improvement and development as drugs. In this study we adapted a yeast growth restoration assay, in which expression of the M2 channel inhibits yeast growth and exposure to an M2 channel inhibitor restores growth, into a robust and sensitive high-throughput screen for M2 channel inhibitors. A screen of over 250,000 pure chemicals and semi-purified fractions from natural extracts identified 21 active compounds comprising amantadine, rimantadine, 13 related adamantanes and 6 non-adamantanes. Of the non-adamantanes, hexamethylene amiloride and a triazine derivative represented new M2 inhibitory chemotypes that also showed antiviral activity in a plaque reduction assay. Of particular interest is the fact that the triazine derivative was not sufficiently potent for detection as an inhibitor in the traditional two electrode voltage clamp assay for M2 channel activity, but its discovery in the yeast assay led to testing of analogues of which one was as potent as amantadine.


Assuntos
Antivirais/isolamento & purificação , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Proteínas da Matriz Viral/antagonistas & inibidores , Proteínas da Matriz Viral/genética , Antivirais/farmacologia , Mutação de Sentido Incorreto/genética , Técnicas de Patch-Clamp , Sensibilidade e Especificidade , Leveduras/efeitos dos fármacos , Leveduras/crescimento & desenvolvimento
14.
PLoS Pathog ; 8(5): e1002691, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22589723

RESUMO

Tuberculosis, caused by Mycobacterium tuberculosis infection, is a major cause of morbidity and mortality in the world today. M. tuberculosis hijacks the phagosome-lysosome trafficking pathway to escape clearance from infected macrophages. There is increasing evidence that manipulation of autophagy, a regulated catabolic trafficking pathway, can enhance killing of M. tuberculosis. Therefore, pharmacological agents that induce autophagy could be important in combating tuberculosis. We report that the antiprotozoal drug nitazoxanide and its active metabolite tizoxanide strongly stimulate autophagy and inhibit signaling by mTORC1, a major negative regulator of autophagy. Analysis of 16 nitazoxanide analogues reveals similar strict structural requirements for activity in autophagosome induction, EGFP-LC3 processing and mTORC1 inhibition. Nitazoxanide can inhibit M. tuberculosis proliferation in vitro. Here we show that it inhibits M. tuberculosis proliferation more potently in infected human THP-1 cells and peripheral monocytes. We identify the human quinone oxidoreductase NQO1 as a nitazoxanide target and propose, based on experiments with cells expressing NQO1 or not, that NQO1 inhibition is partly responsible for mTORC1 inhibition and enhanced autophagy. The dual action of nitazoxanide on both the bacterium and the host cell response to infection may lead to improved tuberculosis treatment.


Assuntos
Autofagia/efeitos dos fármacos , Macrófagos/microbiologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Proteínas/metabolismo , Tiazóis/farmacologia , Antiparasitários/farmacologia , Linhagem Celular , Células HEK293 , Humanos , Macrófagos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Monócitos/microbiologia , Complexos Multiproteicos , Mycobacterium tuberculosis/efeitos dos fármacos , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , Nitrocompostos , Fagossomos/metabolismo , Serina-Treonina Quinases TOR , Tuberculose/tratamento farmacológico , Tuberculose/prevenção & controle
15.
J Nat Prod ; 75(6): 1189-91, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22626446

RESUMO

The new hexahydroazulenones hortonones A (1) to C (3) were isolated from the leaves of three representative species of the endemic Sri Lankan genus Hortonia that belongs to the family Monimiaceae. Hortonones A (1) and B (2) have the unprecedented rearranged hortonane sesquiterpenoid carbon skeleton, and hortonone C (3) has the unprecedented rearranged and degraded 13-norhortonane skeleton. Hortonone C (3) exhibited in vitro cytotoxicity against human breast cancer MCF-7 cells at 5 µg/mL.


Assuntos
Antineoplásicos Fitogênicos/isolamento & purificação , Diterpenos/isolamento & purificação , Monimiaceae/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama , Diterpenos/química , Diterpenos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Estrutura Molecular , Folhas de Planta/química , Sri Lanka
16.
J Biol Chem ; 287(21): 17530-17545, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22474287

RESUMO

Mammalian target of rapamycin complex 1 (mTORC1) signaling is frequently dysregulated in cancer. Inhibition of mTORC1 is thus regarded as a promising strategy in the treatment of tumors with elevated mTORC1 activity. We have recently identified niclosamide (a Food and Drug Administration-approved antihelminthic drug) as an inhibitor of mTORC1 signaling. In the present study, we explored possible mechanisms by which niclosamide may inhibit mTORC1 signaling. We tested whether niclosamide interferes with signaling cascades upstream of mTORC1, the catalytic activity of mTOR, or mTORC1 assembly. We found that niclosamide does not impair PI3K/Akt signaling, nor does it inhibit mTORC1 kinase activity. We also found that niclosamide does not interfere with mTORC1 assembly. Previous studies in helminths suggest that niclosamide disrupts pH homeostasis of the parasite. This prompted us to investigate whether niclosamide affects the pH balance of cancer cells. Experiments in both breast cancer cells and cell-free systems demonstrated that niclosamide possesses protonophoric activity in cells and in vitro. In cells, niclosamide dissipated protons (down their concentration gradient) from lysosomes to the cytosol, effectively lowering cytoplasmic pH. Notably, analysis of five niclosamide analogs revealed that the structural features of niclosamide required for protonophoric activity are also essential for mTORC1 inhibition. Furthermore, lowering cytoplasmic pH by means other than niclosamide treatment (e.g. incubation with propionic acid or bicarbonate withdrawal) recapitulated the inhibitory effects of niclosamide on mTORC1 signaling, lending support to a possible role for cytoplasmic pH in the control of mTORC1. Our data illustrate a potential mechanism for chemical inhibition of mTORC1 signaling involving modulation of cytoplasmic pH.


Assuntos
Antinematódeos/farmacologia , Niclosamida/farmacologia , Proteínas/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Concentração de Íons de Hidrogênio , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Complexos Multiproteicos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR
17.
PLoS One ; 6(6): e21549, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21738705

RESUMO

BACKGROUND: Acidification of the cytoplasm and the extracellular environment is associated with many physiological and pathological conditions, such as intense exercise, hypoxia and tumourigenesis. Acidification affects important cellular functions including protein synthesis, growth, and proliferation. Many of these vital functions are controlled by mTORC1, a master regulator protein kinase that is activated by various growth-stimulating signals and inactivated by starvation conditions. Whether mTORC1 can also respond to changes in extracellular or cytoplasmic pH and play a role in limiting anabolic processes in acidic conditions is not known. METHODOLOGY/FINDINGS: We examined the effects of acidifying the extracellular medium from pH 7.4 to 6.4 on human breast carcinoma MCF-7 cells and immortalized mouse embryo fibroblasts. Decreasing the extracellular pH caused intracellular acidification and rapid, graded and reversible inhibition of mTORC1, assessed by measuring the phosphorylation of the mTORC1 substrate S6K. Fibroblasts deleted of the tuberous sclerosis complex TSC2 gene, a major negative regulator of mTORC1, were unable to inhibit mTORC1 in acidic extracellular conditions, showing that the TSC1-TSC2 complex is required for this response. Examination of the major upstream pathways converging on the TSC1-TSC2 complex showed that Akt signaling was unaffected by pH but that the Raf/MEK/ERK pathway was inhibited. Inhibition of MEK with drugs caused only modest mTORC1 inhibition, implying that other unidentified pathways also play major roles. CONCLUSIONS: This study reveals a novel role for the TSC1/TSC2 complex and mTORC1 in sensing variations in ambient pH. As a common feature of low tissue perfusion, low glucose availability and high energy expenditure, acidic pH may serve as a signal for mTORC1 to downregulate energy-consuming anabolic processes such as protein synthesis as an adaptive response to metabolically stressful conditions.


Assuntos
Proteínas/metabolismo , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Concentração de Íons de Hidrogênio , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos , Fosforilação/genética , Fosforilação/fisiologia , Proteínas/genética , Transdução de Sinais/genética , Serina-Treonina Quinases TOR , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
18.
PLoS One ; 5(12): e14410, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21203451

RESUMO

BACKGROUND: Protein aggregation is a hallmark of many neurodegenerative diseases and has been linked to the failure to degrade misfolded and damaged proteins. In the cell, aberrant proteins are degraded by the ubiquitin proteasome system that mainly targets short-lived proteins, or by the lysosomes that mostly clear long-lived and poorly soluble proteins. Both systems are interconnected and, in some instances, autophagy can redirect proteasome substrates to the lysosomes. PRINCIPAL FINDINGS: To better understand the interplay between these two systems, we established a neuroblastoma cell population stably expressing the GFP-ubiquitin fusion protein. We show that inhibition of the proteasome leads to the formation of large ubiquitin-containing inclusions accompanied by lower solubility of the ubiquitin conjugates. Strikingly, the formation of the ubiquitin-containing aggregates does not require ectopic expression of disease-specific proteins. Moreover, formation of these focused inclusions caused by proteasome inhibition requires the lysine 63 (K63) of ubiquitin. We then assessed selected compounds that stimulate autophagy and found that the antihelmintic chemical niclosamide prevents large aggregate formation induced by proteasome inhibition, while the prototypical mTORC1 inhibitor rapamycin had no apparent effect. Niclosamide also precludes the accumulation of poly-ubiquitinated proteins and of p62 upon proteasome inhibition. Moreover, niclosamide induces a change in lysosome distribution in the cell that, in the absence of proteasome activity, may favor the uptake into lysosomes of ubiquitinated proteins before they form large aggregates. CONCLUSIONS: Our results indicate that proteasome inhibition provokes the formation of large ubiquitin containing aggregates in tissue culture cells, even in the absence of disease specific proteins. Furthermore our study suggests that the autophagy-inducing compound niclosamide may promote the selective clearance of ubiquitinated proteins in the absence of proteasome activity.


Assuntos
Niclosamida/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Ubiquitina/química , Antinematódeos/farmacologia , Autofagia , Proteínas de Fluorescência Verde/metabolismo , Humanos , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Microtúbulos/metabolismo , Complexos Multiproteicos , Doenças Neurodegenerativas/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Ligação Proteica , Sirolimo/farmacologia , Solubilidade , Serina-Treonina Quinases TOR
19.
J Nat Prod ; 73(3): 422-7, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20028134

RESUMO

Five new bafilomycins, F (1) to J (5), have been isolated from laboratory cultures of two Streptomyces spp. obtained from marine sediments collected in British Columbia, and their structures have been elucidated by detailed analysis of spectroscopic data and the synthesis of model compounds. The new bafilomycins F (1), G (2), H (3), and J (5) along with several co-occurring known analogues showed potent inhibition of autophagy in microscopy and biochemical assays. The thiomorpholinone fragment present in bafilomycin F (1) has not previously been found in a natural product.


Assuntos
Autofagia/efeitos dos fármacos , Macrolídeos/isolamento & purificação , Streptomyces/química , Colúmbia Britânica , Macrolídeos/síntese química , Macrolídeos/química , Macrolídeos/farmacologia , Biologia Marinha , Modelos Moleculares , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Estereoisomerismo
20.
PLoS One ; 4(9): e7124, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19771169

RESUMO

BACKGROUND: Mammalian target of rapamycin complex 1 (mTORC1) is a protein kinase that relays nutrient availability signals to control numerous cellular functions including autophagy, a process of cellular self-eating activated by nutrient depletion. Addressing the therapeutic potential of modulating mTORC1 signaling and autophagy in human disease requires active chemicals with pharmacologically desirable properties. METHODOLOGY/PRINCIPAL FINDINGS: Using an automated cell-based assay, we screened a collection of >3,500 chemicals and identified three approved drugs (perhexiline, niclosamide, amiodarone) and one pharmacological reagent (rottlerin) capable of rapidly increasing autophagosome content. Biochemical assays showed that the four compounds stimulate autophagy and inhibit mTORC1 signaling in cells maintained in nutrient-rich conditions. The compounds did not inhibit mTORC2, which also contains mTOR as a catalytic subunit, suggesting that they do not inhibit mTOR catalytic activity but rather inhibit signaling to mTORC1. mTORC1 inhibition and autophagosome accumulation induced by perhexiline, niclosamide or rottlerin were rapidly reversed upon drug withdrawal whereas amiodarone inhibited mTORC1 essentially irreversibly. TSC2, a negative regulator of mTORC1, was required for inhibition of mTORC1 signaling by rottlerin but not for mTORC1 inhibition by perhexiline, niclosamide and amiodarone. Transient exposure of immortalized mouse embryo fibroblasts to these drugs was not toxic in nutrient-rich conditions but led to rapid cell death by apoptosis in starvation conditions, by a mechanism determined in large part by the tuberous sclerosis complex protein TSC2, an upstream regulator of mTORC1. By contrast, transient exposure to the mTORC1 inhibitor rapamycin caused essentially irreversible mTORC1 inhibition, sustained inhibition of cell growth and no selective cell killing in starvation. CONCLUSION/SIGNIFICANCE: The observation that drugs already approved for human use can reversibly inhibit mTORC1 and stimulate autophagy should greatly facilitate the preclinical and clinical testing of mTORC1 inhibition for indications such as tuberous sclerosis, diabetes, cardiovascular disease and cancer.


Assuntos
Autofagia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Acetofenonas/farmacologia , Amiodarona/farmacologia , Antinematódeos/farmacologia , Automação , Autofagia/fisiologia , Benzopiranos/farmacologia , Fármacos Cardiovasculares/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Modelos Químicos , Complexos Multiproteicos , Niclosamida/farmacologia , Ciências da Nutrição , Perexilina/farmacologia , Proteínas , Serina-Treonina Quinases TOR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...